

Int. J. of Advanced Networking and Applications 377
Volume: 01, Issue: 06, Pages: 377-381 (2010)

Remote Administrative Suite for Unix-Based
Servers

G.Rama Koteswara Rao

Professor, Department of Computer Science, Post-Graduate Centre, P.B.Siddhartha College, Vijayawada – 520 010
Email: koti_g @yahoo.com

G.Siva Nageswara Rao
Reader, Department of Computer Science, Post-Graduate Centre, P.B.Siddhartha College, Vijayawada – 520 010

Email: sivanags@india.com

B.V.Subba Rao
Associate Professor, Department of IT, PVP Siddhartha Institute of Technology, Vijayawada

Email: bvsrau@gmail.com

--ABSTRACT---
This paper deals with the methodologies that help in enhancing the capabilities of the server. An attempt is made to
develop software that eases the burden of routine administrative functions. This results in increasing the overall
throughput of the server.

Keywords: Server, throughput
--

Date of Submission: 05, December 2009 Revised: 22, April 2010 Date of Acceptance: 15, May 2010
--

1. INTRODUCTION

I n this paper, we deal with client-server technology. We

develop methods to enhance the capabilities of a client in
accessing a server on static and dynamic administrative
services. Generally, a server administrator has the privilege
of capturing everything that is happening on the server side.

This paper discusses two processes, running one at server
and another at selected client. The client side process sends
an IP packet, with a request for desired service. The process
running on the server side acts like a gateway and examines
the incoming packet. This “gateway process” processes the
request.

2. CLIENT SIDE SOFTWARE
Features that incorporated in developing client side
software include the following among several others.

• User and Group Management
• Remote Script Execution with Feedback
• File System Monitoring
• Monitoring Paging and Swap Space
• Monitoring System Load
• Process Management
• File Locking
• Device Drivers
• Database Administration

3.. ROLES OF CLIENTS
A main feature of the client is to give a convenient User
interface, hiding the details of how the server 'talks' to the
user. The client needs to first establish a connection with
the server, given its address. After the connection is
established, the client needs to be able to do two things

1. Receive commands from the user, translate them to
the server's language (protocol) and send them to the
server.
2 . Receive messages from the server, translate them
into human-readable form, and show them to the user.
Some of the messages will be dealt-with by the client
automatically, and hidden from the user. This is based
on the Client designer's choice.

4. ALGORITHM DEVELOPED FOR CLIENT SIDE

SOFTWARE FUNCTIONS:

1.1. get the server's address from a working address that
can be used to talk over the Internet.

1.2 connect to the server
1.3 while (not finished) do:
1.3.1wait until there is information either from the server,

or from the user.
1.3.2 If (information from server) do
1.3.2.1 parse information, show to user, update local state

information, etc.
1.3.3 else {we've got a user command}
1.3.3.1 parse command, send to server, or deal with locally.
1.4 done

5. ROLES OF SERVERS

A server’s main feature is to accept requests from clients,
handle them, and send the results back to the clients. The
Server side process checks the 8-bit unused field of IP
packet to confirm that the request is from a valid client. We
discuss two kinds of servers: a single-client server, and a
multi-client server.

Int. J. of Advanced Networking and Applications 378
Volume: 01, Issue: 06, Pages: 377-381 (2010)

5.1 Single Client Servers

Single client server responds only to one client at a given
time. It acts as follows:

1. Accept connection requests from a Client.

2. Receive requests from the Client and return results.

3. Close the connection when done, or clear it if it's
broken from some reason.

Following is the basic algorithm a Single-Client Server
performs:

1.1 bind a port on the computer, so Clients will be able to
connect

1.2. forever do:
1.2.1. listen on the port for connection requests.
1.2.2. accept an incoming connection request
1.2.3. if (this is an authorized Client)
1.2.3. 1while (connection still alive) do:
1.2.3. 2receive request from client
1.2.3.3 handle request
1.2.3.4 send results of request, or error messages.
1.2.3.5 done
1.2.4 else
1.2.4.1 abort the connection
1.3 done

5.2 Multi Client Servers

Multi-Client server responds to several clients at a given
time. It acts as follows:

1. Accept new connection requests from Clients.

2. Receive requests from any Client and return results.

3. Close any connection that the client wants to end.

Following is the basic algorithm a Multi-Client Server
performs:

1.1 bind a port on the computer, so Clients will be
able to connect
1.2 listen on the port for connection requests.
1.3 forever do:
1.3.1 wait for either new connection requests, or
requests from existing Clients.
1.3.2 if (this is a new connection request)
1.3.2.1 accept connection
1.3.2.2 if (this is an un-authorized Client)
1.3.2.2.1 close the connection
1.3.2.3 else if (this is a connection close request)
1.3.2.3.1 close the connection
1.3.2.4 end if
1.3.3 end if
1.3.4 else { this is a request from an existing Client

connection}
1.3.4.1 receive request from client
1.3.4.2 handle request
1.3.4.3 send results of request, or error messages
1.3.5 end if
1.4 done

6. FILE SYSTEM MONITORING

Monitoring complete file systems is the most common
monitoring task. On different flavors of Unix the
monitoring techniques are the same, but the commands and
fields in the output vary slightly. This difference is due to
the fact that command syntax and the output columns vary
depending on the flavor of the Unix system being used.
We have developed software script for monitoring the file
system usage.
 The outcome of our software that is developed using
several methods are as follows:

6.1 Percentage of used space method.
Example:
/dev/hda2 mounted on /boot is 11%

6.2 Megabytes of free space method.
Example:
Full File System on pbscpg55046.pbscpg
/dev/hda3 mounted on / only as 9295 MB Free Space
/dev/hda2 mounted on /boot only as 79 MB Free Space

6.3 Combining percentage used 6.1 and megabytes of free
space 6.2.
6.4 Enabling the combined script to execute on AIX,
HP_UX, Linux and Solaris.

7. MONITORING PAGING AND SWAP SPACE

Every Systems Administrator attaches more importance to
paging and swap space because they are supposed to be the
key parameters to fix a system that does not have enough
memory. This misconception is thought to be true by many
people, at various levels, in a lot of organizations. The fact
is that if the system does not have enough real memory to
run the applications, adding more paging and swap space is
not going to help. Depending on the applications running
on the system, swap space should start at least 1.5 times
physical memory. Many high-performance applications
require 4 to 6 times real memory so the actual amount of
paging and swap space is variable, but 1.5 times is a good
place to start.

A page fault happens when a memory segment, or page, is
needed in memory but is not currently resident in memory.
When a page fault occurs, the system attempts to load the
needed data into memory, this is called paging or
swapping, depending on the Unix system being used.
When the system is doing a lot of paging in and out of
memory, this activity needs monitoring. If the system runs
out of paging space or is in a state of continuous swapping,
such that as soon as a segment is paged out of memory it is
immediately needed again, the system is thrashing. If this
thrashing condition continues for very long, there is a
possible risk of the system crashing. One of the goals of
the developed software is to minimize the page faults.

Each of four Unix flavors, AIX, HP-UX, Linux, and
Solaris, use different commands to list the swap space
usage, the output for each command and OS varies also.
The goal of this paper is to create all-in-one shell script

Int. J. of Advanced Networking and Applications 379
Volume: 01, Issue: 06, Pages: 377-381 (2010)

that will run on any of our four Unix flavors. A sample
output of the script is presented below.

Paging Space Report for GRKRAO
Thu Oct 25 14:48:16 EDT 2007
Total MB of Paging Space : 33MB
Total MB of Paging Space Used : 33MB
Total MB of Paging Space Free : 303MB
Percent of Paging Space Used : 10%
Percent of Paging Space Free : 90%

8. MONITORING SYSTEM LOAD

There are three basic things to look at when monitoring the
load on the system.
1. First is to look at the load statistics produced.

2. Second one is to look at the percentages of CPU usage
for system/kernel, user/applications, I/O wait state and idle
time.

3. The final step in monitoring the CPU load to find hogs.
Most systems have a top like monitoring tool that shows the
CPUs, processes, users in descending order of CPU usage.

9. FILE LOCKING

File locking allows multiple programs to cooperate in their
access to data. This paper looks at the following two
schemes of file locking.
1. A simple binary semaphore scheme
2. A more complex file locking scheme of locking
different parts of a file for either shared or exclusive access

10. DEVICE DRIVERS

Device Drivers are needed to control any peripherals
connected to a server. This paper focuses on the following
aspects of device drivers where an authorized client can
control devices connected to the server.
1. Registering the device
2. Reading from a device and Writing to a device
3. Getting memory in device driver

11. DATABASE ADMINISTRATION
C” Language is used to access MySQL. In this paper, the
following database administrative features are implemented
to be run at an authorized client
1. Create a new database
2. Delete a database
3. Change a password
4. Reload the grant tables that control permissions
5. Provide the status of the database server
6. Repair any data tables
7. Create users with permissions

12. USING THE ALGORITHM THAT IS DESCRIBED IN
SERIAL NUMBER 4 ABOVE, WE DEVELOPED THE
FOLLOWING C PROGRAM CODE:

Sample Client Program
#include <sys/socket.h>
#include<netinet/in.h>

#include<arpa/inet.h>
#include<stdio.h>

int main(int argc,char **argv)
{
 int sockfd,n,len;
 char buf[10240];
 struct sockaddr_in servaddr;
 if(argc!=2) perror("invalid IP");
 if((sockfd=socket(AF_INET,SOCK_STREAM,0))<0)
perror("socket error");
 bzero(&servaddr,sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_port = htons(13);
 if(inet_pton(AF_INET,argv[1],&servaddr.sin_addr)
 <= 0) perror("SERVER ADDR ");
 if(connect(sockfd,(struct
sockaddr*)&servaddr,sizeof(servaddr))<0)
perror("connect error");

 buf[0] = '\0';
 printf("Enter the Directory name \n");
 scanf("%s",buf);

if(write(sockfd,buf,100) < 0) {printf("write error ");
exit(1); }

if((len = read(sockfd,buf,100)) < 0) {
printf("read error \n"); exit(1); }

else { printf(" Inode Number = %s\n", buf);
}
if((len = read(sockfd,buf,100)) < 0) { printf("read error
\n"); exit(1); }

 else { printf(" No of links = %s\n", buf); }
if((len = read(sockfd,buf,100)) < 0) { printf("read error
\n"); exit(1); }
 else { printf("Size of file in bytes = %s\n",
buf); }
if((len = read(sockfd,buf,100)) < 0) { printf("read error
\n"); exit(1); }
 else { printf("UID = %s\n", buf); }
if((len = read(sockfd,buf,100)) < 0) { printf("read error
\n"); exit(1); }
 else { printf("GID = %s\n", buf); }
if((len = read(sockfd,buf,100)) < 0) {
printf("read error \n"); exit(1); }
 else { printf("Type and Permissions = %s\n", buf);
}
if((len = read(sockfd,buf,100)) < 0) { printf("read
error \n"); exit(1); }
 else { printf("Last Modification Time = %s\n", buf); }
if((len = read(sockfd,buf,100)) < 0) { printf("read
error \n"); exit(1); }
 else { printf("Last Access Time = %s\n", buf); }
 exit(1);
}
13. USING THE ALGORITHM THAT IS DESCRIBED IN
SERIAL NUMBER 5 ABOVE, WE DEVELOPED THE
FOLLOWING C PROGRAM CODE :

Sample Server Program
#include<sys/socket.h>
#include<arpa/inet.h>
#include<stdio.h>

Int. J. of Advanced Networking and Applications 380
Volume: 01, Issue: 06, Pages: 377-381 (2010)

#define MAXLINE 10024
#define LISTENQ 10

int main(int argc,char **argv)
{
 int listenfd,connfd,len,i;
 struct sockaddr_in servaddr;
 struct stat statbuf;
 char buff[MAXLINE],buff1[MAXLINE];
 DIR *dir;
 struct dirent *direntry;
 listenfd = socket(AF_INET,SOCK_STREAM,0);
 bzero(&servaddr,sizeof(servaddr));
 servaddr.sin_family = AF_INET;
 servaddr.sin_addr.s_addr = htonl(INADDR_ANY);
 servaddr.sin_port = htons(13);
 bind(listenfd,(struct
sockaddr*)&servaddr,sizeof(servaddr));
 listen(listenfd,LISTENQ);
 connfd = accept(listenfd,(struct
sockaddr*)NULL,NULL);
 if((len = read(connfd,buff,100)) < 0) {
printf("read error \n"); exit(1); }
else printf("%s\n",buff);
 lstat(buff,&statbuf);
 sprintf(buff, "%d", statbuf.st_ino);
 if(write(connfd,buff,100) < 0) { printf("write
error "); exit(1); }
 sprintf(buff, "%d", statbuf.st_nlink);
 if(write(connfd,buff,100) < 0) { printf("write
error "); exit(1); }
 sprintf(buff, "%d", statbuf.st_size);
 if(write(connfd,buff,100) < 0) { printf("write error ");
exit(1); }
sprintf(buff,"%d", statbuf.st_uid);
if(write(connfd,buff,100) < 0) { printf("write error ");
exit(1); }
sprintf(buff,"%d", statbuf.st_gid);
 if(write(connfd,buff,100) < 0) { printf("write error ");
exit(1); }
sprintf(buff,"%o", statbuf.st_mode);
if(write(connfd,buff,100) < 0) { printf("write error ");
exit(1); }
sprintf(buff,"%s", ctime(&statbuf.st_mtime));
 if(write(connfd,buff,100) < 0) { printf("write error ");
exit(1); }
sprintf(buff,"%s", ctime(&statbuf.st_atime));
 if(write(connfd,buff,100) < 0) { printf("write error ");
exit(1); }
 close(connfd);
 exit(1);
}

Sample Outputs
[root@grkrao 01Oct]# ./a.out
Message From Client : /etc/passwd
[grkrao@grkraoclient 01Oct]# ./a.out 123.0.57.44
Enter the File name : /etc/passwd
Message From Server :
 Inode Number = 1798355

 No of links = 1
Size of file in bytes = 3263
UID = 0
GID = 0
Type and Permissions = 100644

Last Modification Time = Fri Apr 20 16:12:06 2007
Last Access Time = Tue Apr 24 11:46:33 2007

14. CONCLUSION

This paper attempted to enhance the capabilities of the
server by providing software tools that reduce the burden of
routine administrative functions of the administrator.

Through the use of the developed software, it can be
concluded that Remote Administrative Suite for Unix
Based Servers would prove very useful to administrators
and such use would result in increasing the overall
throughput of the server.

REFERENCES

[1] W.Richard Stevens, Advanced Programming in Unix
Environment, Pearson Education, 91-136

[2] W.Richard Stevens, Unix N/W Programming – Vol-1:
Networking APIs: Socket and XTI, Pearson Education,
3-140

[3] Uresh Vahalia, Unix Internals: New Frontiers, Pearson
Education, 43-50

[4] W.Richard Stevens, Unix Network Programming, PHI,
258-3

[5] Eric S.Raymond, The Art of Unix Programming,
Addison-Wesley Professional Computing Series.

[6] W.Richard Steven, Unix Network Programming:
Interprocess Communication, Pearson Education.

[7] William Stalling, Operating Systems, Internals &
Design Principles, Pearson Education.

[8] Terrence Chan, Unix System Programming Using C++,
PHI

[9] AEleen Frisch, Essential System Administration,
O’Reilly.

[10] Christian Benvenuti, Understanding Linux Network
Internals, O’Reilly.

[11] Frank Mayer,Karl MacMillan, David Caplan, SeLinux
By Example: Using Security Enhanced Linux, Prentice
Hall.

[12] Robert Love, Linux Kernel Development, Sams
Publishing

[13] Roderick W.Smith, Linux Power Tools, Sybex.

[14] Christopher Negus & Thomas Weeks, Linux Trouble
Shooting Bible, John Wiley & Sons.

[15] Richard L.Petersen, Redhat : The Complete Reference
Enterprise Linux & Fedora Edition : The Complete
Reference,McGraw-Hill.

Int. J. of Advanced Networking and Applications 381
Volume: 01, Issue: 06, Pages: 377-381 (2010)

Authors Biography

Mr.Rama Koteswara Rao.G presently working
as a Professor in P.B. Siddhartha College
Vijayawada, affiliated to Acharya Nagarjuna
University, Guntur. He received his M.Tech
degree in Computer Science and Engineering

from MGR University, Chennai. He is pursuing Ph.D in
Computer Science and Engineering at Vinayaka Missions
University, Chennai. He presented 3 papers in National
/International Conference Proceedings. He is a member and
secretary of Computer Society of India (CSI), Vijayawada
Chapter. His current research interests are in the areas of
Client Server Architecture, Operating Systems.

Mr.G.Siva Nageswara Rao presently working
as a Reader in P.B. Siddhartha College
Vijayawada, affiliated to Acharya Nagarjuna
University, Guntur.. He pursued his M.Tech
Acharya Nagarjuna University, Guntur. He has
a total of 12 years of rich experience

comprising teaching, research and industry. He has guided
65 Masters level projects. He is the life member of 3
professional bodies. His current research interests are in the
areas of Data warehousing and Data mining and image
processing.

B.V.Subba Rao, presently working as
Associate Professor in P.V.P Siddhartha
Institute of Technology Vijayawada, affiliated
to Jawaharlal Nehru Technological University.
He received his M.Tech degree with distinction

in Computer Science and Engineering from Acharya
Nagarjuna University. He is pursuing Ph.D in Computer
Science and Engineering at Acharya Nagarjuna University,
Guntur. He received Gold Medal from Andhra University
in his Post Graduate Studies. He has guided 30 post
Graduated and 40 graduate projects. He has published 4
papers in International Journals and 3 papers in national
Journals and presented 4 papers in National /International
Conference Proceedings. He has Academic participation in
24 International / National Seminars / workshops and
Conferences. He is a member of Computer Society of India
(CSI), Association for Computing Machinery (ACM), and
Indian Society for Technical Education (ISTE). His current
research interests are in the areas of Artificial Intelligence,
Natural Language Processing and Information Retrieval
systems.

